If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4n^2-4n-143=0
a = 4; b = -4; c = -143;
Δ = b2-4ac
Δ = -42-4·4·(-143)
Δ = 2304
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2304}=48$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-48}{2*4}=\frac{-44}{8} =-5+1/2 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+48}{2*4}=\frac{52}{8} =6+1/2 $
| 132=2x-3(-6x-4) | | 4n+1=1245n | | 5.6x=19.04 | | 6-9(6+u)-2u=-10 | | 12-4k=20 | | (2x-5)+(4x-10)=180 | | C=^d | | 3x-3=-2x-12 | | 5/6a+2/9=3/4 | | -7=-7(-5+n) | | 3/4=5/6a+2/9 | | 10z=300 | | -3/2z-4=-77/20 | | -6k-18=-24 | | 1/4e=16 | | -73=j+-94 | | 4+b=5b=16 | | 6=4n+1 | | -4x=-1x+3 | | 2{3y+8}=40 | | s+21/2s+20=50 | | 2(n−3)=4*n+1 | | 3.5=0.1x | | 4y^2-20y+39=0 | | 2(x+5)+10=-4x+2 | | 33=12r(9-r) | | -4=j/7 | | -1=3+x/9 | | (x-7)+46=90 | | 55,000+2.500y=62000+2000y | | 3(x+4)-2x=2(x+6)-5 | | 2(5-3v)+90=28 |